Polymer Scaffolds for Small-Diameter Vascular Tissue Engineering
نویسندگان
چکیده
منابع مشابه
Polymer scaffolds for small-diameter vascular tissue engineering.
To better engineer small-diameter blood vessels, a few types of novel scaffolds were fabricated from biodegradable poly(L-lactic acid) (PLLA) by means of thermally induced phase separation (TIPS) techniques. By utilizing the differences in thermal conductivities of the mold materials, the scaffolds with oriented gradient microtubular structures in axial or radial direction were created using be...
متن کاملElectrospun Bilayered Vascular Scaffolds for Engineering Small Diameter Blood Vessels
336 ©2013 Society For Biomaterials
متن کاملTissue engineering of small diameter vascular grafts.
Tissue engineering, using either polymer or biological based scaffolds, represents the newest approach to overcoming limitations of small diameter prosthetic vascular grafts. Their disadvantages include thromboembolism and thrombosis, anticoagulant related haemorrhage, compliance mismatch, neointimal hyperplasia, as well as aneurysm formation. This current review represents an overview about pr...
متن کاملPreparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model
BACKGROUND The development of a suitable extracellular matrix (ECM) scaffold is the first step in vascular tissue engineering (VTE). Synthetic vascular grafts are available as an alternative to autologous vessels in large-diameter arteries (>8 mm) and medium-diameter arteries (6-8 mm). In small-diameter vessels (<6 mm), synthetic vascular grafts are of limited use due to poor patency rates. Com...
متن کاملDegradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.
Various tissue-engineered vascular grafts have been studied in order to overcome the clinical disadvantages associated with conventional prostheses. However, previous tissue-engineered vascular grafts have possessed insufficient mechanical properties and thus have generally required either preoperative cellular manipulation or the use of bioreactors to improve their performance. In this study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Functional Materials
سال: 2010
ISSN: 1616-301X
DOI: 10.1002/adfm.201000922